How would you solve the following equations?
The options are
a. integrate $y^{\prime}=$ function of x
b. separate the variables
c. first order linear equation
d. make a special substitution
e. homogeneous equation
f. Bernoulli equation
g. exact equation
h. reduce the order

1. $x y^{\prime}=y+\frac{y^{2}}{x} \quad$ e or f separate the variables
2. $x^{\frac{d y}{d x}}+6 y=3 x y^{4 / 3} \quad f^{v}=y^{1-4 / 3}$ $\frac{d v}{d x} \frac{2 v}{x}=-1$, If $e^{-\frac{1}{3}-\frac{2}{x}}$
3. $y^{\prime}=\sqrt{x+y+1}$

$$
v=\frac{1}{x+y+1}
$$

$$
\begin{aligned}
& d x x \\
& \frac{d v}{d}=v+1
\end{aligned}
$$

$\therefore \frac{d v}{d x}=\frac{v+1}{2 v}$ separate $\begin{gathered}\text { valuables }\end{gathered}$
4.

$$
\begin{aligned}
& y y^{\prime \prime}=\left(y^{\prime}\right)^{2} \\
& v=y^{\prime} \ldots y v \frac{d v}{d y}=v^{2} \quad \text { separate. }
\end{aligned}
$$

5. $x y^{\prime \prime}+y^{\prime}=4 x$ IF $e^{\int \frac{1}{x} d x}$
6. $2 x y \frac{d y}{d x}+y^{2}=10 x$

$$
\frac{d}{d x}\left(x y^{2}\right)=10 x
$$

7. $x y^{2}+3 y^{2}-x^{2} y^{\prime}=0$ b
8. $2 x y+x^{2} y^{\prime}=y^{2} \quad e$
$9 x^{3}+3 y-x y^{\prime}=0$ IF $e^{\int-\frac{3}{x} d x}$

- Calculate $\mathrm{e}^{\wedge}\{\mathrm{At}\}$ where $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
(Note that A has eigenvalues 1,3 with eigenvectors $\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Also $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
a. $\left[\begin{array}{cc}e^{t} & e^{3 t} \\ -e^{t} & e^{3 t}\end{array}\right]$
b. $\left[\begin{array}{cc}e^{t} & t e^{3 t} \\ -e^{t} & e^{3 t}\end{array}\right]$
c. $\frac{1}{2}\left[\begin{array}{cc}e^{t}+e^{3 t} & -e^{t}+e^{3 t} \\ -e^{t}+3 t & e^{t}+e^{3 t}\end{array}\right]$
- Classify all the critical points of $x^{\prime}=A x$ (as \checkmark node (proper, improper), center, saddle point, spiral point, stable, unstable etc etc).

- How would you find a particular solution to $x^{\prime}=A x+\left[\begin{array}{c}e^{t} \\ 0\end{array}\right]$
- How would you find a particular solution to $x^{\prime}=A x+\left[\begin{array}{c}e^{t} \\ 0\end{array}\right]$ where $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
a. Try a solution $\left[\begin{array}{l}a \\ b\end{array}\right] e^{t}+\left[\begin{array}{l}c \\ d\end{array}\right] e^{3 t}$
b. Try a solution $A\left(\begin{array}{c}1 \\ -1\end{array}\right] e^{t}+B\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{3 t}$
c. Try a solution $\left[\begin{array}{l}a \\ b\end{array}\right] e^{t}+\left[\begin{array}{l}c \\ d\end{array}\right] t e^{t}$
d. something else.

How would you calculate $e^{\wedge\{A t\}}$ where

$$
A=\left[\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right]
$$

a. substitute At into the power series for $e^{\wedge} u$
b. solve the differential equation $x^{\prime}=A x$ and do a calculation with the fundamental matrix
c. break apart A into two pieces, and substitute those into the power series for $e^{\wedge} u$
d. something else.

Same question when $A=\left[\begin{array}{cc}2 & 0 \\ -1 & 2\end{array}\right]$
Same question when $A=\left[\begin{array}{cc}2 & 0 \\ -1 & 3\end{array}\right]$

Section 5 page 325 question $26+$
Which of the following is the appropriate form of a solution of the non-homogeneous equation

$$
x^{\prime \prime}-6 x^{\prime}+13 x=t e^{\wedge}\{3 t\} \sin (2 t)
$$

Note that the characteristic polynomial has roots $3+2 i$ and $3-2 i$
a. $a t e^{3 t} \sin 2 t+b t e^{3 t} \cos 2 t$
b. $a t e^{3 t} \sin 2 t+b t e^{3 t} \cos 2 t+c e^{3 t} \sin 2 t$
c. $a t e^{23 t} \sin 2 t+b t e^{3 t} \cos 2 t$
d. None of the above.
e. formula a + formula C.

What about $x^{\prime \prime}-6 x^{\prime}+13 x=t \sin (2 t)$
a. $a t e^{3 t} \sin 2 t+b t e^{3 t} \cos 2 t$
b. $a t \sin 2 t+b t \cos 2 t$
$+c \sin 2 t+d \cos 2 t$

Exam in Murphy 130
For things you don't heed to know, only go by what I have told you yourdon't weed to know.
Please check the grokking if you ort a low score on any question (in Exam 3)

Linear algebra

True/false for a linear equation $\mathrm{Ax}=\mathrm{b}$ where A is a 2×2 matrix?

- If A is invertible, then the above always has a unique solution for any b.
- If the rank of A is 1 , we can always find a vector b in $R \wedge 2$ so that $A x=b$ does not have a solution.
- Suppose $b=0$. If the rank of A is 2 , we can always find a solution $x \neq 0$
- Suppose v_1 and v_2 are both solutions. Then $3 v_{-} 1+2 v_{-} 2$ is also a solution.
- If the column vectors of A are linearly independent, then A has an inverse.
- The 2×2 zero matrix is the only 2×2 matrix whose null space is 2 -dimensional.

Questions not about a particular equation $\mathrm{Ax}=\mathrm{b}$. True/False ?
True at least one free vanable False

- We can find a 2×3 matrix whose null space is the zero vector space. $0 t \leq 2 \neq 3$
- We can find a 2×3 matrix whose null space is the space spanned by the vector $(1,2)$. Nall space vectors have length 3
- We can find a 2×3 matrix whose null space is the space spanned by the vector $(1,2,0)$. $\left[\begin{array}{ccc}2 & -1 & 1 \\ 0 & 0 & 1\end{array}\right]$ hus the correct nullspace.
- We can find a 2×3 matrix whose null space is the space spanned by the vector $(1,2,0)$ and whose column space is the space spanned by $(2,1)$. dim nulsp trank $\neq 3$
- We can find a 2×3 matrix whose null space is the space spanned by the vector $(1,2,0)$ and whose column space has dimension 2.
- We can find a 2×3 matrix whose column space has dimension 3 .

True/false

Let A be an $\mathrm{m} \times \mathrm{n}$ matrix with $\mathrm{m}<\mathrm{n}$.

1. $A x=b$ always has a solution.
2. $A x=0$ always has a solution
3. $A x=0$ always has infinitely many solutions.
4. $A x=0$ always has a non-zero solution.
5. The columns of A are necessarily dependent.
6. The rows of A are necessarily independent.

Suppose now just that $\mathrm{m} \leq \mathrm{n}$

1. If $A x=b$ has a solution for every b then the columns of A are independent.
2. If $A x=b$ has a solution for every b then the columns of A span $R \wedge m$
3. If $A x=b$ has a solution for every b then the rank of A is n.

Page 107 question 7.
A car starts from rest and its engine accelerates it at $10 \mathrm{ft} / \mathrm{sec}^{2}$
Also, air resistance provides $0.1 \mathrm{ft} / \mathrm{sec}^{2}$ of deceleration for each $\mathrm{ft} / \mathrm{sec}$ of the car's velocity.
(a) Find the car's maximum possible velocity.
(b) How long does it take to attain 90% of the limiting velocity, and how far does it travel in doing this?

Start with:
What equation is relevant for this problem?
a. Let $x(t)=$ position at trine t,

$$
x^{\prime \prime}+10 x^{\prime}+\frac{1}{10}=0 \quad x^{\prime \prime}=10-0.1 x^{\prime}
$$

\sqrt{b}.

$$
x^{\prime \prime}+\frac{x^{\prime}}{10}-10=0
$$

c. $\frac{d v}{d t}+\frac{v}{10}-10=0 \quad v=x^{\prime}$
d. None of the above

Questions (9): Solve $x^{\prime \prime}=0$
a. 10 b. 90 c. $100^{\text {d }}$ d. 110 e. 1000

Solve $\frac{d v}{d t}+\frac{v}{10}=10$
Separate variables, etc.
Get $v=\cdots$. Solve $r=90$
to get t.
How far? $x=\int v d t$ and put in t.

Page 54 question 36.
A tank contains 60 gallons of pure water. Brine with concentration 1 lb salt per gallon enters at $2 \mathrm{gal} / \mathrm{min}$. Perfectly mixed solution leaves at $3 \mathrm{gal} / \mathrm{min}$. Thus the tank is empty after 1 hour.
(a) Find the amount of salt in the tank after t minutes,
(b) What is the maximum amount of salt ever in the tank? $\quad 2 \mathrm{gal} / \mathrm{m} / \mathrm{h}$

What is the volume of liquid in the tank at time t ?

$$
a t+60 \quad b 60 t<60-t \checkmark
$$

d None of the above

What equation is appropnate $f o r$ solving this problem?
$\sqrt{ } a \frac{d x}{d t}=2-\frac{3 x}{60 \sim t}$. Let $x(t)$ ib tank. $\frac{x}{60-t}$
b $\frac{d x}{d t}=\frac{2}{60-t}$ is the concentration,
$c \frac{d x}{d t}=\frac{2-3 x}{60-t}$ a None of the above

How do we go about solving this equation? Integrating factor etc.

Page 54 question 36.
A tank contains 60 gallons of pure water. Brine with concentration 1 lb salt per gallon enters at $2 \mathrm{gal} / \mathrm{min}$. Perfectly mixed solution leaves at $3 \mathrm{gal} / \mathrm{min}$. Thus the tank is empty after 1 hour.
(a) Find the amount of salt in the tank after t minutes,
(b) What is the maximum amount of salt ever in the tank?

Sohotar:

Let $x(t)$ be the amount of salt in the tank at time t.
The volume of liquid in the tank at trine t is $60-t$

The concentration of salt at trine t is $\frac{x(t)}{60-t} \quad$ ib $/ g a l$

$$
\begin{aligned}
& \text { We get } \frac{d x}{d t}=2-\frac{3 x}{60-t} \\
& \frac{d x}{d t}+\frac{3 x}{60-t}=2 \\
& \text { IF. }=e^{\int \frac{3}{60-t} d t}=e^{-3 \ln (60-t)} \\
& =e^{\ln (60-t)^{-3}}=\frac{1}{(60-t)^{3}} \\
& \frac{1}{(60-t)^{3} \frac{d x}{d t}+\frac{3 x}{(60-t)^{4}}=\frac{2}{(60-t)^{3}}} \\
& \frac{d}{d t} \frac{x}{(60-t)^{3}}=\frac{2}{(60-t)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t} \frac{x}{(60-t)^{3}}=\frac{2}{(60-t)^{3}} \\
& \frac{x}{(60-t)^{3}}=\frac{1}{(60-t)^{2}}+C \\
& x=60-t+C(60-t)^{3} \\
& x(0)=0=60+C 60^{3} \\
& C=-\frac{1}{60^{2}} \\
& x=60-t-\frac{(60-t)^{3}}{60^{2}}
\end{aligned}
$$

To find the maximum solve

$$
\frac{d x}{d t}=0
$$

Like section 3.2 questions 23-26:
Determine for what values of k and c the system has (a) a unique solution (b) no solution (c) infinitely many solutions

$$
\begin{aligned}
& 3 x+2 y=1 \\
& 6 x+c y=k
\end{aligned}
$$

Like section 9.1 13-20
Identity whether the critical point $(0,0)$ is stable, asymptotically stable ur unstable. From aspects of the solutions, identify it as a node, a saddle point, a center or a spiral point.
20. $d x / d t=y, d y / d t=-5 x-4 y$
$? \lambda=-2 \pm i \quad$ Asymptotically is ingle spiral pout.
Mir gives solutions $e^{-2 t}\left[\begin{array}{c}\cos t \cdots \\ \cdots\end{array}\right] \quad e^{-2 t}\left[\begin{array}{c}\cos t \\ -\end{array}\right]$
We do not need to distuggwh proser and improper nodes.

